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Designers often want to analyze more and more sophisticated structures, thus leading to
very large "nite element models (typically 10 00 000 degrees of freedom for a body car, for
example). These models being too costly for the early stages of design and optimization can
be reduced by a substructure analysis or a mesh simpli"cation of the components.
A methodology is proposed in this paper for simplifying "nite triangular plate element
models leading to a dramatic reduction in the number of degrees of freedomwhile preserving
the dynamical properties of the initial system. In particular, the proposed method is
developed for models composed of the plate element STIFF63 generated by the software
ANSYS. The principle consists in determining the parameters (thickness, Young's modulus,
density) of the triangular elements of a coarse model which replaces a large set of elements of
the re"ned model. The simpli"ed mesh must satisfy one of two criteria. The "rst requires that
the mass and sti!ness matrices of the simpli"ed model be as close as possible to the Guyan
condensed matrices of the re"ned model on the reduced node set, whilst the second requires
that the dynamical properties of the global structure be preserved. The application of these
approaches is illustrated on two test structures using the gradient method to solve the
resulting optimization problem. The second approach is shown to give the best results.
Typically, the size of the models can be reduced by a factor of 20 whilst preserving the
dynamical properties of the structure at low frequencies.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The recent evolution of computer-aided design (CAD) technology allows the engineer to
model very complex and expensive structures which are subjected to increasingly strong
constraints. These re"ned models are needed to optimize structural behaviour and demand
very powerful modelling tools.
The "nite element method is currently the most popular approach used to model

structures and a wide variety of general "nite element software coupled with CAD can be
found in the domain of solid mechanics, for example NASTRAN and ANSYS.
However, the number of degrees of freedom (d.o.f.) and consequently the computational

e!ort increases dramatically with the precision in the representation of the structure
topology. The objective of model simpli"cation is to reduce the number of active d.o.f. while
preserving dynamical properties of the initial model in a given frequency range.

2. ELEMENT STIFFNESS AND MASS MATRICES FOR THE ANSYS
PLATE ELEMENT STIFF63

The proposed methods are based on the knowledge of the formal expressions for the
sti!ness and mass matrices of the plate element STIFF63 of ANSYS. Hence, these matrices
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



TABLE 1

Integration points and corresponding weighting used by ANS>S

Integration
area

No. of
points (n)

Co-ordinates
(r
�
, s

�
) Weighting (w

�
)

(1/6, 1/6) 1/6
3 (2/3, 1/6) 1/6

(1/6, 2/3) 1/6
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are formulated in order to obtain, using the formal expressions, exactly the same results as
those given by ANSYS.
A three-node plate element limited to the bending e!ect (three d.o.f. per node: w, �

�
, and

�
�
, where w is the transversal displacement along Z, and �

�
and �

�
are the rotations around

the X- and >-axis) is used.
For a given element, the sti!ness and mass matrices can be expressed as

sti+ness matrix: K"�
�

B�DB d<; (1)

mass matrix: M"�
�

�N�Nd<, (2)

whereD is de"ned from the behaviour law (�"D�), B is such that �"B�un�,N is such that
u"N�un�, �un� is the elementary vector of the nodal variables, and � is the stress tensor and
� the strain tensor.

2.1. STIFFNESS MATRIX

Assuming a plane stress state leads to

D"

Eh�

12(1!v�) �
1 v 0

v 1 0

0 0 (1!v)/2� . (3)

The discrete Kirchho! triangle (DKT) triangle formulation is used to obtain the
expression of B. It is based on the Love}Kirchho! hypothesis used for thin plates, which
consists in neglecting transverse shear strains [1].
The elementary sti!ness matrix K is then calculated with a three-point Hammer

integration, which is the numerical integration method used by ANSYS [2].
K"��

���
����
���

hB�DB det J drds is then replaced by K"��
���

w
�
f (r

�
, s

�
) where

f represents the function to integrate and h the thickness at any point of the plate
(h"��

���
N

�
h
�
).

Table 1 reports the integration points and corresponding weighting used by ANSYS.

2.2. MASS MATRIX

For the mass matrix, the calculation of the N matrix is performed according to the
Zienkiewicz formulation [3]. Let ABC denote the triangular plate element to be modelled.
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The matrix N is then given by
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(5)

The previously de"ned geometrical transformation is used and, as with the sti!ness
matrix, the elementary mass matrix M is calculated with a three node Hammer integration.
Hence, M"��

���
����
���

�hN�NdetJdrds is replaced by M"��
���

w
�
f(r

�
, s

�
) where

f represents the function to integrate and h the thickness at any point of the plate
(h"��

���
N

�
h
�
).

The integration points and corresponding weighting used by ANSYS are the same as
those used for the sti!ness matrix.

3. PRINCIPLES FOR MODEL SIMPLIFICATION

To simplify a "nite element model, it is necessary to choose (1) the parameters of the
simpli"ed model to vary in order to approximate the "nely meshed model, (2) the cost
function that represents the distance between the simpli"ed model and the re"ned model
and (3) the optimization method used to minimize the cost function.
The two principles which have been implemented to optimize simpli"ed "nite plate

element models use the gradient method.

3.1. THE GRADIENT METHOD

The gradient method consists of minimizing, in a least-squares sense, a cost function of
several variables. After convergence, the values of the variables minimizing the function are
obtained.
Let p be a vector containing the m variables, p� the initial value of p, dp the vector

containing the corrections of the parameters, f(p) the vector of the functions to be
minimized.
One can expand f in the following manner:

f(p)"f(p�)#


�
���

�f

�p
�

(p�) dp
�
#2, (6)

where p"p�#dp.
Consider the increment dp such that f(p�)"!�


���
�f/�p

�
(p�) dp

�
.
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If dp is small, then f (p"p�#dp) will be close to 0. Using a "rst order approximation
from the Taylor expansion, p� needs to be chosen close to the solution, which is not usually
obvious. So an iterative process must be applied to obtain a solution minimizing f (it may be
a local minimum). Three design parameters corresponding to the thickness at the vertices
are used giving

�
�f

�p
�

( p�)
�f

�p
�

(p�)
�f

�p
�

(p�)� �
dp

�
dp

�
dp

�
�"!(f(p�)),

dF . dp"!F, dp"!dF� .F, (7)

where dF� is the pseudo-inverse of the matrix dF.
The corresponding algorithm is:

(1) initialization: p"p�;
(2) computation of dp"!dF�(p) .F (p), for the current value of p;
(3) replacement of p by p#dp;
(4) test of convergence on f(p):

If f(p)(�, the algorithm stops: the optimal solution is p.
If f(p)'�, return to step 2.

This method has been used with two di!erent objective functions. The two principles are
presented now.

3.1.1. Principle 1

The "rst idea consists in determining the values of h which minimize the functions

(K (h)
��
!K

���
)/K

���
, i"1,2, n, j"1,2, n,

where h represents all the parameters of the simpli"ed model. The parameters are the
thicknesses at each node of the simpli"ed model; K(h) is the formal sti!ness matrix of the
simpli"ed model established using MAPLE based on the ANSYS formulation (cf., section
2), and calculated with MATLAB. K

�
is the Guyan condensed sti!ness matrix [4] of the

re"ned model; n is the number of d.o.f. of the simpli"ed model and consequently the size of
the matrices K(h) and K

�
.

The real structure is assumed to be "nely meshed using a large number of STIFF63
elements from ANSYS. Then, the operations for identifying the parameters are performed
using a MATLAB program:
(1) The simpli"ed model is de"ned, selecting among the nodes of the re"ned model the

nodes de"ning the super-elements of the simpli"ed model.
(2) The matrices K

�
(Guyan condensation of the global sti!ness matrix on the selected

master nodes) and K(h) (formal expression of the reduced matrix) are then calculated.
The objective function is obtained using the norm of the vectorF whose components are the
functions previously de"ned. The optimal values of h are then obtained based on the
gradient method. Constraints can be taken into account in order to ensure physically
meaningful parameters.
(3) Once the optimal thicknesses are obtained, the mass density of the simpli"ed model is

corrected in order to respect the total mass of the re"ned model. The simpli"ed model now
has both sti!ness and mass matrices which are considered to be &&equivalent'' to those of the
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re"nedmodel. Therefore, its dynamic behaviour is expected to be as close as possible to that
of the re"ned model.
(4) Finally, the simpli"ed model is computed with ANSYS in order to verify its validity.

3.1.2. Principle 2

The second principle consists in determining the values of E (Young's modulus) and
� (mass density) of each triangular element minimizing a cost function by considering the
distances between the eigenfrequencies (n((�

�
(p)!�

�
)/�

�
)100) and the eigenvectors

((y
��
(p)!y

��
)/�y

�
�100) of the re"ned and simpli"ed models (v"1,2,m, i"1,2, n),

where p is the vector of the parameters (E and �) of each plate of the simpli"ed model; �
�
and

y
�
are the eigenvalues and eigenvectors of the re"ned model, verifying the equilibrium

equation: (K

����

!�
�
M


����
) z

�
"0, where K


����
and M


����
are the global sti!ness

and mass matrices of the ANSYS re"ned model leading to the eigenvalues �
�
and the

associated eigenvectors z
�
. For comparison, y

�
is the subvector of z

�
restricted to the n d.o.f.

of the simpli"ed model; �
�
(p) and y

�
(p) are the eigenvalues and corresponding eigenvectors

of the simpli"ed model, such that (K (p)!�
�
(p)M(p)) y

�
(p)"0, K(p) and M(p) being

calculated using the formal elementary matrices of the simpli"ed model, calculated with
MATLAB according to the ANSYS formulation de"ned in section 2; n is the size of y

�
(p),

corresponding to the number of d.o.f. of the simpli"ed model; m is the number of modes
taken into account in the cost function.
Moreover, to respect the rigid body mass properties of the structure, one adds a cost

function which minimizes the distance between the mass and the moments of inertia of the
re"ned and simpli"ed models: (v (p)!v/�v�) 100, with v(p)"diag(R�

�
. M(p)R

�
) and

v"diag(R�M

����

R), where M

����

is the global mass matrix of the ANSYS re"ned
model; M(p) is the mass matrix of the simpli"ed model; R is the rigid body matrix of the
ANSYS re"ned model; R

�
is the rigid body matrix of the simpli"ed model.

As before, the structure is "nely meshed by using ANSYS. The parameters are identi"ed
using the gradient minimization method. The procedure is:

(1) De"ne the simpli"ed model by selecting among the nodes of the re"ned model those
nodes of the triangular macroelements constituting the simpli"ed model.
(2) Compute the "rst eigensolutions of the re"ned model in order to choose the number

of modes to be taken into account in the identi"cation procedure (choice of m). It is possible
to take into account the dynamic behaviour obtained with di!erent limit conditions: free,
clamped, supported.
(3) Determine the parameters E and � of each element of the simpli"ed model leading to

a dynamic behaviour as close as possible to that of the re"ned model. This is obtained using
the gradient method and previously de"ned cost function. In order to compare the true
modes, one uses criteria which ensure the pairing of the modes even if the frequencies cross
themselves.
(4) Then the eigensolutions of the simpli"ed model are computed with ANSYS in order

to verify its validity.

4. TEST MODELS

The material of the studied structures is steel, with E"2)1e11 N/m�, v"0)3,
�"7800 kg/m�.
In order to illustrate the two simpli"cation principles previously explained, two re"ned

models have been created:



Figure 1. Re"ned shell 1.

Figure 2. Simpli"ed shell 1.
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� a 195 node plate (Figure 1) simpli"ed by a eight-node model (Figure 2)
� a circular plate meshed with 1597 nodes (Figure 3) simpli"ed by an 81-node model
(Figure 4).

5. RESULTS

5.1. PRINCIPLE 1

5.1.1. Plate 1

Using the original thickness (5 cm) for the simpli"ed model leads to a dynamical
behaviour which is far from that of the re"ned model. For example, in the case of
free-boundary conditions, it leads to the relative errors on the eigenfrequencies reported in
Table 2. Hence the nodal thickness are used as design parameters in order to reduce these
errors.



Figure 3. Re"ned perforated circular plate.

Figure 4. Simpli"ed circular plate.

TABLE 2

Relative percentage error in the eigenfrequencies

Mode no. 1 2 3 4 5 6

Free plate 1 1)4 !0)2 3)6 !0)4 16)5 5)4
Clamped plate 1 4)3 5)7 !2)2 !9)0 10)9 25)2
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The simpli"cation of this 195-node model by an eight-node model leads to the following
results.
The 8 nodal thicknesses of the simpli"ed model rapidly converge (Figure 5); The average

value of the minimizing functions also converges but remains rather large (Figure 6); The
equivalent density of the simpli"ed model with the thicknesses calculated at the twelth



Figure 5. Evolution of the eight nodal thicknesses of the simpli"ed model.

Figure 6. Evolution of the average value of the cost function.

TABLE 3

Comparison of the eigenfrequencies obtained with principle 1

Mode no.
Re"ned model

eigenfrequencies (Hz)
Simpli"ed model

eigenfrequencies (Hz) Relative error (%)

1 6)86 5)14 !25
2 9)04 6)41 !29)1
3 12)92 9)35 !27)6
4 18)24 12)28 !32)6
5 20)21 15)78 !21)9
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iteration is 10 063 kg/m�; The eigenfrequency errors of the free simpli"ed model
reconstructed with ANSYS are large (Table 3). Note that only two frequencies can be
compared with the ones of the re"ned model due to the cut-o! frequency of the Guyan
condensed model (8 Hz).



TABLE 4

Relative percentage in the eigenfrequencies of the circular plate

Free mode 1 2 3 4 5 6 7 8 Average

Model 1 9)96 9)80 24)29 13)37 12)69 27)55 19)48 16)73
Model 2 4)16 1)03 13)11 5)86 5)37 15)13 11)21 8)41

Clamped mode
Model 1 1)07 9)27 !1)30 9)52 !3)24 !0)54 0)75 !3)59 3)66
Model 2 2)51 7)85 1)79 8)23 1)47 0)45 3)74 2)64 3)59

Supported mode
Model 1 16)55 19)88 11)48 11)62 2)46 11)13 5)78 0)40 9)91
Mode 2 10)85 12)38 8)32 9)28 4)55 5)38 6)62 3)21 7)57

Figure 7. Evolution of Young's modulus of each element of the simpli"ed model.

Figure 8. Evolution of the mass density of each element of the simpli"ed model.
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Figure 9. Values of the parameters in a sector of the circular plate: (a) mass density (�10� kg/m�); (b) Young's,
modulus (�10�� N/m�).

Figure 10. Evolution of the error in the mass of the simpli"ed model.
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5.1.2. Conclusion

This "rst principle, used elsewhere to simplify beam-like structures [5], leads to
unacceptable results in the case of plate structures, even though the di!erence between the
sti!ness matrices was minimized. It can be explained by the fact that the formulation of
beams gives exact results in static analysis contrary to the formulation of plate elements.
Indeed, it seems di$cult to obtain a simpli"ed model whose mass and sti!ness matrices

(and consequently the eigensolutions) are exactly the same as those of the re"ned model.
Moreover, even if it were possible, there are some limitations since the parameters of the
simpli"ed structure are identi"ed with respect to the Guyan condensed model of the re"ned
structure. The available frequency domain is limited by the cut-o! frequency corresponding
roughly to a third of the "rst frequency of the re"ned model in which the master nodes have
been clamped. To avoid this drawback, a second principle using a cost function based on
the distance between the "rst eigensolutions of the re"ned and simpli"ed models has been
formulated.



Figure 11. Evolution of the error in the moments of inertia of the simpli"ed model.

Figure 12. Evolution of the eigenvalue errors of the simpli"ed model.

Figure 13. Evolution of the MAC between the eigenvectors of the re"ned and simpli"ed models.
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TABLE 5

Comparison between the re,ned and simpli,ed models obtained with principle 2

Mode No.
Re"ned

model (Hz)
Simpli"ed
model (Hz)

Relative
error (%) MAC (%)

Free 1 18)97 18)69 1)48 100
2 19)59 19)31 1)43 100
3 29)06 29)16 0)34 99)9
4 43)31 43)28 0)07 99)8
5 44)54 44)59 0)11 99)8
6 60)36 60)16 0)33 99)8
7 68)13 67)04 1)60 99)9

Clamped 1 39)43 39)67 0)61 100
2 68)75 69)26 0)74 99)9
3 85)24 84)26 1)15 100
4 107)92 108)81 0)82 99)7
5 142)80 142)4 0)79 99)8
6 154)73 151)9 1)83 98)7
7 179)18 178)17 0)56 98)4
8 205)3 207)16 0)91 99)1

Supported 1 16)31 16)37 0)37 100
2 41)04 41)16 0)29 100
3 49)29 48)98 0)63 100
4 80)09 80)79 0)87 99)8
5 97)8 98)48 0)70 99)8
6 105)32 105)67 0)33 99)5
7 135)35 134)77 0)44 99)5
8 154)26 151)49 1)80 99)4
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5.2. PRINCIPLE 2

5.2.1. Circular plate

In order to test this principle, an attempt was made to simplify a "nely meshed
axisymmetric perforated structure having roughly 5000 d.o.f. by a full modal having 20
times fewer d.o.f.
The axisymmetric property of the model (Figure 3) resulted in some problems. The "rst

calculation led to an instability of the modal assurance criterion (MAC). In fact for the
antisymmetric modes, the nodal diameters of the simpli"ed and re"ned models can be
moved by an angle of 453. A solution to this problem is to add a single mass in order to
remove the symmetric property of the structure. The position of the added mass of 0)1 kg is
represented in Figure 4.
The use of the original parameters with the simpli"ed model leads to a dynamical

behaviour which is far from the one of the re"ned model and leads to large errors on the
eigenvalues reported in Table 4 (model 1). Removing the elements corresponding to
the holes leads to better results but still quite far from the re"ned model as can be seen in
Table 4 (model 2). So we will attempt to reduce the errors using Young's modulus and the
mass density of each element as design parameters.
The simpli"cation of this model by an 81-node model gives the following results when

seven free modes, eight clamped modes and eight supported modes are included as targets



TABLE 6

Relative percentage errors in the eigenfrequencies obtained in identifying only seven free
modes

Mode no. 1 2 3 4 5 6 7 8 Average

Free mode 0)05 0)26 0)31 0)02 0)29 0)13 0)26 0)19
Clamped mode 0)43 2)21 0)47 4)53 7)17 2)82 6)81 12)60 4)63
Supported mode 3)62 5)31 5)64 9)34 13)21 6)86 13)18 14)46 8)95

TABLE 7

Comparison between the re,ned and simpli,ed models with a single mass of 0)5 kg

Mode No.
Re"ned

model (Hz)
Simpli"ed
model (Hz)

Relative
error (%)

Free 1 17)69 17)45 !1)37
2 19)59 19)31 !1)44
3 28)63 28)81 0)61
4 39)83 39)74 !0)24
5 44)54 44)59 0)12
6 52)17 52)67 0)97
7 68)13 67)04 !1)61

Clamped 1 30)92 31)73 2)61
2 47)18 47)60 0)88
3 85)24 84)26 !1)15
4 98)76 98)48 !0)29
5 141)28 142)40 0)79
6 153)00 151)05 !1)27
7 176)56 174)15 !1)36
8 205)30 207)16 0)91

Supported 1 13)27 13)45 1)37
2 29)79 29)97 0)60
3 49)28 48)98 !0)61
4 70)64 70)83 0)27
5 97)80 98)47 0)69
6 104)96 105)30 0)32
7 129)87 129)74 !0)10
8 154)26 151)49 !1)80
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in the cost function.

� Young's modulus (Figure 7) and the mass density (Figure 8) of each element converge to
the values represented in Figure 9 on a sector of the axisymmetric structure. One notes
that they are consistent and very small for the element corresponding to the hole in the
re"ned model.

� The errors on the mass (Figure 10) and on the moments of inertia (Figure 11) tend toward
zero.

� The errors on the eigenvalues (Figure 12) and theMAC values (Figure 13) are minimized.
� The eigenfrequencies and the MAC of the simpli"ed model reconstructed with ANSYS



TABLE 8

Comparison between the re,ned and simpli,ed models without a mass

Mode No.
Re"ned

model (Hz)
Simpli"ed
model (Hz)

Relative
error (%)

Free 1 19)59 19)31 !1)44
2 19)59 19)31 !1)44
3 29)26 29)32 0)18
4 44)54 44)59 0)12
5 44)54 44)59 0)12
6 68)13 67)04 !1)61
7 68)13 67)04 !1)61

Clamped 1 40)51 40)66 0)38
2 85)24 84)26 !1)15
3 85)24 84)26 !1)15
4 141)28 142)40 0)79
5 141)28 142)40 0)79
6 165)01 157)98 !4)26
7 205)30 207)13 0)91
8 205)30 207)13 0)91

Supported 1 17)17 17)17 0)04
2 49)28 48)98 !0)1
3 49)28 48)98 !0)61
4 97)80 98)47 0)69
5 97)80 98)47 0)69
6 107)32 107)79 0)44
7 154)26 151)49 !1)80
8 154)26 151)49 !1)80
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are close to those of the re"ned model (Table 5): an error of around 1% on the
eigenfrequencies and MAC above 98%.

The CPU time for the algorithm running under MATLAB 5.3 on an HP J7000
workstation is about 2 h. This time is rather high but the simpli"ed model runs now in 10 s
compared to 230 s for the re"ned one. Hence, one obtains a signi"cant gain of
computational cost for the next use of the model (in a process of optimization for example).
However, if only the seven free modes are included in the cost function, the errors on the
eigenfrequencies of the clamped modes and the supported modes remain rather large
(Table 6). Moreover one observes the same phenomenon if only the clamped modes or the
supported modes are identi"ed. It can be explained by pointing out that when the plate is
free, the kinetic energy on the elements of the border of the plate is high and the strain
energy is low. As a result the algorithm can lead to correct values of � but an erroneous
value of E at the border. On the contrary, when the plate is clamped the kinetic energy is low
at the border which leads to erroneous values of �. That is why several boundary conditions
(and several modes) are included in the cost function in order to ensure the parameters
E and � of each element are signi"cant.
In order to check the validity of the results, the simpli"ed model with the previously

identi"ed parameters (Figure 9) and the re"ned model have been compared with a single
mass of 0)5 kg (instead of 0)1 kg) and without a mass. The eigenfrequency errors given in
Tables 7 and 8 are small (average of 1%).



TABLE 9

Relative percentage error in the displacements of four nodes

Displacements
of the re"ned
model (mm) Model 1 Model 2 Model 3

Clamped w1 24)29 32)70 19)55 6)13
border w2 20)5 36)33 21)80 4)54

w3 11)55 40)79 25)61 3)55
w4 13)26 41)53 26)00 5)66

Average 37)84 23)24 4)97

Supported w1 7)56 16)19 8)98 8)86
border w2 5)03 17)42 9)83 6)76

w3 1)35 5)36 5)32 4)44
w4 1)76 8)94 7)14 7)95

Average 11)98 7)81 7)01
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One can also compare the static behaviour of the simpli"ed and re"ned models. A force of
100 N has been applied to the centre of the plate. The responses of several models have been
compared: the re"ned model, the simpli"ed model with the original parameters with (model
1) and without (model 2) the elements corresponding to the holes and the simpli"ed model
with the identi"ed parameters (model 3). The displacements along the z-axis of four nodes
(Figure 6) are given in Table 9. Even though the static behaviour has not been taken
account of in the cost function, the simpli"ed model with the identi"ed parameters leads to
acceptable results (errors of around 5%).

6. CONCLUSION

The feasibility of the simpli"cation of "nite element models meshed with thin triangular
plate elements has been demonstrated with the second principle. Indeed, it provides
acceptable results for the proposed example, providing a model has the same
eigenfrequencies and eigenvectors for the "rst modes with parameters that have a physical
meaning. Moreover, the inertial characteristics are well preserved allowing the model to be
used as a substructure.
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